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We introduce a method to incorporate hydrodynamic interaction in a model of semiflexible filament dynam-
ics. Hydrodynamic screening and other hydrodynamic interaction effects lead to nonuniform drag along even
a rigid filament, and cause bending fluctuations in semiflexible filaments, in addition to the nonuniform
Brownian forces. We develop our hydrodynamics model from a string-of-beads idealization of filaments, and
capture hydrodynamic interaction by Stokes superposition of the solvent flow around beads. However, instead
of the commonly used first-order Stokes superposition, we do an equivalent of infinite-order superposition by
solving for the true relative velocity or hydrodynamic velocity of the beads implicitly. We also avoid the
computational cost of the string-of-beads idealization by assuming a single normal, parallel and angular
hydrodynamic velocity over sections of beads, excluding the beads at the filament ends. We do not include the
end beads in the averaging and solve for them separately instead, in order to better resolve the drag profiles
along the filament. A large part of the hydrodynamic drag is typically concentrated at the filament ends. The
averaged implicit hydrodynamics methods can be easily incorporated into a string-of-rods idealization of
semiflexible filaments that was developed earlier by the authors. The earlier model was used to solve the
Brownian dynamics of semiflexible filaments, but without hydrodynamic interactions incorporated. We vali-
date our current model at each stage of development, and reproduce experimental observations on the mean-
squared displacement of fluctuating actin filaments . We also show how hydrodynamic interaction confines a
fluctuating actin filament between two stationary lateral filaments. Finally, preliminary examinations suggest
that a large part of the observed velocity in the interior segments of a fluctuating filament can be attributed to
induced solvent flow or hydrodynamic screening.
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I. INTRODUCTION

Hydrodynamic interaction refers to the force communica-
tion between two particles mediated via the solvent. The mo-
tion of a particle causes a solvent flow around it, which in
turn exerts a drag on a neighboring particle. This drag force
on a particle from the solvent flow induced by a neighboring
particle is referred to as hydrodynamic force.

Semiflexible filaments are polymers whose contour
lengths are on scale of their persistence length, so that their
thermally driven bending fluctuations are resisted by their
elastic bending stiffness �1,2�. Semiflexible filaments make
up the structural scaffold of cell and tissue matrices �actin
and microtubules in cells, collagen in tissue�, and under-
standing their dynamic behavior is critical to understanding
force transmission and remodeling in cell and tissue matri-
ces.

A semiflexible filament is subject to hydrodynamic forces
due to solvent flows induced by the bending and diffusive
motions both within itself and from its neighbors. However,
dynamic models of semiflexible filaments typically neglect
the drag forces arising from the induced solvent flow. For
instance, consider a single semiflexible filament in dilute so-
lution. Typical dynamic models assume the friction coeffi-
cient to be uniform along the filament length, and equal to

that of a unit rigid cylinder of same diameter �2–6�. How-
ever, Lagamarsino et al. �7� showed that when a rigid fila-
ment is modeled as a string-of-beads and the hydrodynamic
interaction between beads accounted for, the drag force and
friction coefficient along the filament is not uniform even
when under a uniform force. The drag force is much greater
at the beads toward the filament ends, and decreases at the
beads toward the filament center �7�. While such nonuniform
drag might not affect the overall motion of a rigid filament
under uniform force, it will cause a semiflexible filament to
bend under uniform force-a phenomenon that will be missed
by semiflexible filament models assuming constant friction
coefficient.

The nonuniform drag along a rigid filament is due to hy-
drodynamic screening. The solvent flow induced by the mo-
tion of the filament ends carry the central region of the fila-
ment with it. Since the central region is now partly drifting in
the induced solvent flow, the relative velocity �observed ve-
locity minus solvent velocity�, and therefore drag experi-
enced by it, is reduced. The phenomenon is akin to drafting
in bicycle or car racing.

The observations of nonuniform drag due to hydrody-
namic screening and other hydrodynamic interaction effects
suggest that a part of the bending fluctuations of a semiflex-
ible filament may be caused by the nonuniform drag, in ad-
dition to the nonuniform Browian forces. Therefore, a model
of semiflexible filament dynamics that is used to interpret
experimental observation needs to include the effects of hy-
drodynamic interaction, originating from within itself and
from neighboring filaments.

The common approaches to capturing hydrodynamic in-
teraction in rigid cylinders tend to employ two conceptual
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ideas. The first is to idealize the cylinder as a string of beads
�8,9�, and the second is to determine the hydrodynamic in-
teraction between the beads by first-order superposition of
Stokesian solvent fields �10�. Idealizing a filament as a string
of beads has the advantages that the solvent flow equations
around a moving bead are well established and that the ge-
ometry between interacting beads is relatively easy to
handle. The chief disadvantage, however, is that solving for
all beads in a string-of-beads approach makes it computa-
tionally expensive to model even a single filament �9�. Now
consider the second idea. Stokesian dynamics is commonly
used to describe solvent flow in these settings because of the
small particle diameters and small velocities involved �11�.
Stokesian flow equations are linear. Therefore the solvent
velocity at any point in an assembly of beads can be esti-
mated, to first order, by summing the solvent flows due to the
motion of each bead alone. The hydrodynamic drag on a
bead can then be determined from its observed velocity rela-
tive to the solvent velocity at its center. The first-order su-
perposition approach to approximating induced solvent flow
has the advantage that it is relatively simple to implement.
However the disadvantage is that it neglects the reflection of
the induced solvent flow between the beads, a higher-order
superposition effect. As a result, the first-order superposition
overlooks the hydrodynamic influence from neighboring par-
ticles which are stationary, and overestimates the hydrody-
namic influence from neighboring particles that are drifting.

The aim of this paper is to introduce a method for includ-
ing hydrodynamic interaction effects on a fluctuating semi-
flexible filament. The proposed method is still based on the
two conceptual ideas discussed above and therefore retains
their advantages. But it avoids the disadvantages associated
with them: We retain the underlying ideas of idealizing the
filament as a string of beads and of determining the hydro-
dynamic drag on the beads by Stokes superposition of the
solvent fields around each bead. However instead of a first-
order superposition, we do an infinite-order superposition by
casting the relative velocity of a bead �observed velocity mi-
nus solvent velocity at bead center� as a separate variable and
solving for it implicitly. We call the relative velocity of the
bead as its hydrodynamic velocity, because the hydrody-
namic drag on the bead is proportional to this relative veloc-
ity. The one-step implicit solution is equivalent to superpos-
ing many back and forth reflections of the solvent velocity
fields, and therefore eliminates the errors of first-order Stoke-
sian superposition. We then reduce the computation cost as-
sociated with the string-of-beads idealization by grouping all
but the end beads into sections, and assuming uniform trans-
lational and rotational velocities for each section. This re-
duces the number of variables and equations to be solved. In
grouping the velocities of the interior beads while still sepa-
rately solving for the velocities of the end beads, we make
use of the observations that the hydrodynamic drag typically
changes sharply at the filament ends and changes slowly over
the filament interior �see Sec. II B�.

The rest of the paper is organized as follows. In Sec. II we
show the theoretical development of the proposed approach
organized in three parts. In part A we show the formulation
of the implicit string-of-bead hydrodynamics. The hydrody-
namic drag on each bead in a string-of-beads idealization is

determined by implicitly solving for its relative or hydrody-
namic velocity. In part B we show the formulation of the
averaged implicit string-of-beads hydrodynamics. By assum-
ing sections of interior beads to have a representative trans-
lational and rotational velocity, the implicit hydrodynamics is
solved over fewer beads. In part C we show how the aver-
aged implicit hydrodynamics method can be incorporated
into an earlier model of a semiflexible filament in Brownian
motion, which had assumed uniform friction coefficient
along the filament �6�. An overall schematic of the proposed
approach is shown in Fig. 1. In Sec. III we use the new
model to simulate the Brownian fluctuation of a free and
confined actin filament. We show that hydrodynamic interac-
tion may have systematic effects on the Brownian conforma-
tions assumed by the filament, warranting detailed follow-up
studies. We also show that hydrodynamic interaction with
neighbors appears to confine a filament by increasing the
filament’s persistence length.

II. METHODS AND VALIDATION

A. Implicit string-of-beads hydrodynamics

The hydrodynamic drag on a bead is determined from its
true relative velocity or hydrodynamic velocity, which is its
observed velocity relative to the solvent flow at the bead
center. The first-order Stokesian superposition approach ob-
tains the solvent velocity at a bead as the summation of the
solvent velocities due to each neighboring bead. The Method
of Reflections improves on the first-order estimate by itera-
tively adding corrections so that the superposed solvent

(a)

(b)

(c)

FIG. 1. Implicit and averaged hydrodynamics of semiflexible
filaments. �a� In a string-of-beads realization of a semiflexible fila-
ment, the hydrodynamic drag on each bead can be determined by
solving for the true relative velocity or hydrodynamic velocity of
each bead. �b� Since the hydrodynamic velocity/drag is much larger
at the end beads of a filament, and since the hydrodynamic veloci-
ties of the interior beads change slowly, sections of the interior
beads �shown within rectangles� can be approximated by hydrody-
namic velocities of representative beads within them �gray beads�.
Therefore instead of solving for the hydrodynamic velocities of the
23 beads in �a�, we need to only solve for the hydrodynamic veloci-
ties of the two end beads and the three representative beads in �b�.
�c� The implicit hydrodynamic velocity technique is combined with
an earlier string-of-rods idealization developed by the authors �6�.
In it, the elastic response of a filament is calculated by considering
each section of the filament as a cantilever beam, and by solving for
the forces and bending degrees of freedom at the cantilever inter-
sections. The drag force on each cantilever is determined from the
hydrodynamic velocities of its representative bead and any associ-
ated end bead.
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flows are induced by the hydrodynamic velocities and not the
observed velocities of the neighbors �10�. We use the same
idea to improve on the first-order superposition estimate of
the solvent field. However, instead of iteratively correcting
for the hydrodynamic velocities as in the Method of Reflec-
tions, we solve for them implicitly. We illustrate this in more
details below in the context of the hydrodynamic interaction
between two beads moving alongside each other.

1. First-order linear superposition

Fig. 2 shows the two-dimensional solvent velocity field
around a bead moving in a fluid at rest. The solvent field
around the bead can be resolved into radial and tangential
velocities, which can be determined at any point using the
distance to the bead center and the angle relative to the bead
velocity. Now consider two beads, I and II, moving with
velocity v1 and v2 perpendicular to the line joining their
centers �Fig. 3�a��. A simple first-order superposition of their
solvent velocity fields would estimate their relative
velocities1 �v1

H and v2
H� as,

v1
H = v1 −

3a

4�r12�
v2, �1a�

v2
H = v2 −

3a

4�r12�
v1. �1b�

However, if bead II were stationary �v2=0�, then by Eq. �1a�,
bead I would experience no hydrodynamic influence from it.
The equation does not capture the hydrodynamic drag on
bead I due to its solvent flow being reflected back by bead II.
Alternatively if bead II were drifting in the solvent flow in-
duced by bead I �v2=v1� 3a

4�r12� ��, then by Eq. �1a�, bead I
would still experience a hydrodynamic influence from bead
II, even though it is the solvent flow from its own motion
that is causing bead II to move. Higher order superpositions
of the solvent field would correct for these effects, and the
Method of Reflections applies them iteratively �12,13�.

2. Method of reflections

The Method of Reflections is an iterative technique that
estimates the relative velocities and therefore hydrodynamic
drag of particles in a Stokesian solvent, by explicitly adding
higher-order corrections to the solvent field in each iteration
�14�. Mathematically, each iteration serves to correct the sol-
vent velocity field so that the no-slip boundary condition is
enforced at the particle center �see Fig. 3�b� for more de-
tails�. Physically, this translates to iteratively correcting the

1Throughout the paper we will assume that the overall solvent
velocity is zero. We will use the term “relative velocity” to refer to
the particle velocity relative to the local solvent velocity, and not
relative to the overall solvent velocity.

v

v�

vr
r

�

FIG. 2. Two-dimensional solvent field around a bead moving
with velocity v in a fluid at rest. A bead moving in a dilute Stoke-
sian solvent at rest induces a solvent flow around it. The induced
solvent flow at any point can be determined as radial �vr� and tan-
gential �v�� velocities, which are functions of the radial separation r
and angle from the flow �. In this study, the cubic-order term in the
solvent velocity equations is neglected.

r

2a

v1 v2

2a

I II

‘First reflection’

‘Second reflection’

‘Third reflection’

(b)

(a)

FIG. 3. Method of Reflections. �a� Consider the case of two
beads, radius a and distance r apart, moving at velocities v1 and v2

perpendicular to the line joining their centers. Let A and B be the
location of the centers of beads I and II. �b� Method of Reflections:
For ease of description, consider v2=0, and neglect the cubic-order
term in the solvent velocity field of a bead �Fig. 2�. The no-slip
boundary condition requires that the solvent velocity and the bead
velocity match at bead center. Due to the first-order superposition of
the solvent field induced by bead I, the solvent velocity at bead II is
no more zero. The Method of Reflections corrects for it by super-
posing a negative solvent field at B, so that the net velocity at Bead
II is zero. Physically it means that the bead II is moving opposite to
the local solvent flow around it, so that the observed velocity is
zero. The corrective solvent field at bead II is now felt at bead I as
�3 /2a /rv1�3 /2a /r, leading to a mismatch again between the sol-
vent and bead velocity at bead I. The Method of Reflections again
corrects for the mismatch by adding on another solvent field at bead
I. Physically the correction means that bead I is now moving rela-
tive to a local solvent velocity of �3 /2a /rv1�3 /2a /r, instead of a
local solvent at rest. Each solvent correction in the Method of Re-
flections can be seen as updating the relative/hydrodynamic velocity
of a bead to ensure that solvent flow at it is induced by the recently
updated hydrodynamic velocity of its neighbor.
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hydrodynamic influence on a particle to originate from the
true relative velocity and not the observed velocity of its
neighbors. For instance in the case of two beads moving
alongside �Eqs. �1��, the next order correction in the Method
of Reflections would be to the hydrodynamic velocity of
bead I,

v1
H = v1 −

3a

4�r12�
�v2 −

3a

4�r12�
v1� , �2a�

where the term within the brackets is but the first-order
hydrodynamic/relative velocity of bead II �Eq. �1b��. The
correction is equivalent to saying that it is the relative veloc-
ity of bead II, and not its observed velocity, that causes the
solvent flow at bead I. Similarly, the next order correction of
the hydrodynamic velocity of bead II would appear as

v2
H = v2 −

3a

4�r12�
�v1 −

3a

4�r12�
�v2 −

3a

4�r12�
v1�	 , �2b�

where the term in the outer brackets is the previously up-
dated hydrodynamic or relative velocity of bead I �Eq. �2a��.
To summarize, the iterative corrections of the Method of
Reflections ensure that it is the updated hydrodynamic ve-
locities that induce solvent flow and exert hydrodynamic ef-
fects. However, such an explicit iterative scheme becomes
difficult to implement once the number of particles increases,
even if only two reflections or correction orders are consid-
ered.

3. Implicit hydrodynamics

Instead of iteratively updating the hydrodynamic velocity
with each reflection, the hydrodynamic velocity can be con-
sidered as a separate variable and solved for implicitly. For
the case of two beads moving perpendicular to their center
line �Fig. 3�a��, the implicit version of Eqs. �2� would be

v1
H = v1 −

3a

4�r12�
v2

H �3a�

v2
H = v2 −

3a

4�r12�
v1

H �3b�

By solving these two equations simultaneously, the hydrody-
namic velocities, and therefore the hydrodynamic drags, of
the two beads can be determined.

Figure 4 shows the predictions of the implicit technique
for the change in the drag of a bead in the presence of an-
other bead. Both beads are of the same radius, moving with
the same velocity perpendicular and parallel to the line
through their centers �see insets in Fig. 4�. Note that the
prefactor 3/4 in Eq. �3� changes to 3/2 for two beads moving
parallel to their center line �see solvent field equations in Fig.
2�. The drag correction is determined as the ratio of the
bead’s hydrodynamic velocity to its apparent relative veloc-
ity, vH /v. The predictions of the implicit method show a
better match to rigorous calculations �15,16� and experimen-
tal observations �17,18�, than the predictions of a first-order
superposition. The implicit technique predicts a smaller drag
reduction than the first-order superposition technique. This is

because a component of a bead’s velocity comes from drift-
ing in the solvent flow induced by its neighbor. In the im-
plicit technique, that component does not exert a drag-
reducing hydrodynamic influence on the bead’s neighbor.
Finally, note that the solution of the first-order superposition
is the same as that given by the first reflection in the Method
of Reflections, and the solution of the implicit technique is
the same as that given by infinite reflections in the Method of
Reflections. The error between the implicit and the
experimental/rigorous solutions in Fig. 4 is not because of
Stokes superpositions, but comes from the approximations in
the equations describing solvent flow around a bead �Fig. 2�
�10�.

4. Implicit hydrodynamics for a rigid rod in dilute solution

The hydrodynamic drag along a rigid rod can be esti-
mated by idealizing it as a string of beads, and solving for
the hydrodynamic velocities of the beads. We resolve the
velocities of a rigid rod and a bead in the following way. The

(a)

(b)

FIG. 4. The correction in the drag on a single bead from the
presence of a neighboring bead moving at the same velocity, per-
pendicular �a� and parallel �b� to the center line. The plots show the
drag correction predicted by the first-order superposition technique
and by the implicit hydrodynamics technique. The predictions are
compared against detailed calculations of the drag correction by
Wakiya �15� and against experimental observations by Faxen �16�.
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two-dimensional motion of a rigid rod can be described com-
pletely by three velocities: the translational velocity of the
rod center in the direction normal to the rod �Vn�, the trans-
lational velocity of the rod center in the direction parallel to
the rod �Vp�, and the rotational velocity about the rod center
�W�. The motion of any bead within the rod can be described
completely by two velocities: the translational velocity nor-
mal to the rod �vn�, and the translational velocity parallel to
the rod �vp�. We use upper-case letters to denote rod veloci-
ties, and lower-case letters to denote bead velocities. The
relation between the velocities of the ith bead and that of the
rigid rod are,

vi
n = Vn + Wric, �4a�

vi
p = Vp, �4b�

where ric is the distance of the ith bead from the rod center c.
The true relative velocity or the hydrodynamic velocity of

the ith bead can be determined by extending Eq. �3� to in-
clude the hydrodynamic influence from the rest of the beads
within the rod. Using appropriate prefactors for the hydrody-
namic influence,

�vi
pH

vi
nH � = � Vp

Vn + ricW
� − 


j=1,j�i

M �
3aj

2�rij�
3aj

4�rij�
� • �v j

pH

v j
nH � . �5�

Here M is the number of beads composing the rod, and vi
pH

and vi
nH are the hydrodynamic velocities of the ith bead,

parallel and normal to the rod.
The total drag force experienced by a rigid string of M

beads is known to be much smaller than the total drag force
experienced by M separate beads. This is due to hydrody-
namic screening—the solvent flow set up by the motion of
one bead reduces the relative velocity and therefore drag
experienced by a neighboring bead. Figures 5�a� and 5�b�
show the hydrodynamic velocity profile of the beads along a
rigid rod in pure normal and rotational motion, scaled re-
spectively by the normal and rotational velocity of the rod.
The profile was determined by solving Eq. �5� simulta-
neously for all beads within the rod �for i=1 to M�. The
profiles are shown for rod sizes of 20, 60, and 100 beads. For
a rigid rod in pure normal translation, the normal velocity of
each bead is uniform along the rod; but the normal hydrody-
namic velocity �Fig. 5�a�� is higher at the rod’s ends and
decreases toward the interior, giving a “U” shape. For a rigid
rod in pure rotation, the normal velocity of each bead in-
creases linearly in opposite directions away from the rod
center. The normal hydrodynamic velocity �Fig. 5�b��, how-
ever, increases faster at the rod ends than in the rod interior.
The highest hydrodynamic velocities, and therefore drag, oc-
cur on the bead at each rod end. We refer to them as “end
beads,” and refer to the rest of the beads as “interior beads.”
The hydrodynamic velocities in the interior beads decrease
toward the center of the rod. It appears that the beads in the
central region of the rod are nearly drifting in the solvent
flow setup by the motion of their neighbors on either side,
and therefore experience a decreased relative velocity and

drag. The end beads, on the other hand, do not experience the
full benefit of hydrodynamic screening and have larger hy-
drodynamic velocities.

For a rigid rod in pure parallel and tangential motion, the
parallel velocity of each bead is uniform along the rod. In
Figs. 5�c� and 5�d�, we show the parallel hydrodynamic ve-
locities of the beads, for rods of 20 and 100 bead sizes. The
hydrodynamic velocities are scaled by the parallel velocity
of the rod. The profile shows large bead-to-bead fluctuations
in hydrodynamic velocities, with no definite overall trend.
We found these fluctuations to be mathematical artifacts.
They disappear upon inclusion of the cubic term in the
Stokes solution for the solvent field around a bead �Fig. 2�,
and the profile takes on a U shape similar to that of the
normal hydrodynamic velocities in Fig. 5�a� �data not
shown�. However, we omit the cubic-order term and the at-
tendant increase in mathematical complexity because �1� the
omission of the cubic-order term leads the less than 5% error
in the total drag calculations for a rigid filament, and �2� the
fluctuations disappear when the hydrodynamic velocities are
determined as section averages �see Sec. II B�.

In Fig. 6 we show validations of the filament hydrody-
namic profile obtained with the implicit method. First, the

(a) (b)

(c) (d)

FIG. 5. Profile of bead hydrodynamic velocities along a rigid
rod in normal, rotational, and parallel motion. �a� The normal hy-
drodynamic velocity profile of beads constituting a rigid rod in pure
normal translation. The hydrodynamic velocities are scaled by the
normal velocity of the rod. Three rod sizes of 20, 60, and 100 beads
are shown, with the profiles displaced by 50, 30, and 10 beads,
respectively. �b� The normal hydrodynamic velocity profile of beads
constituting a rigid rod in pure rotation. The hydrodynamic veloci-
ties are scaled by the rotational velocity of the rod. Three rod sizes
of 20, 60, and 100 beads are shown, with the profiles displaced by
5, 10, and 15 beads, respectively. �c,d� The parallel hydrodynamic
velocity profile of beads constituting a rigid rod in parallel transla-
tion. The hydrodynamic velocities are scaled by the parallel veloc-
ity of the rod. Rod sizes of 20 �Fig. 5�c�� and 100 �Fig. 5�d�� beads
are shown, with the profiles displaced by 50 and 10 beads,
respectively.

AVERAGED IMPLICIT HYDRODYNAMIC MODEL OF… PHYSICAL REVIEW E 81, 031920 �2010�

031920-5



increased drag at the ends for a rigid rod in normal transla-
tion is in agreement with the observations of Lagamarsino et
al. �7�. Figure 6�a� shows that the normal hydrodynamic ve-
locity profile for a string of 101 beads compares well against
that determined by Gluckman et al. �14� using detailed cal-
culations. In Figs. 6�b� and 6�c�, we show the total friction
drag predicted for a rigid rod in translation and rotation, by
the implicit method and by standard equations �Eqs.

�6a�–�6d��. The friction drag is scaled by the velocity of the
rigid rod. In the implicit method, the total friction drag is

calculated as 
i=1
M vi

jH

Vj with j=n , p ,r for rods in normal, par-
allel and rotational motion. The predictions of the implicit
method compare well against standard expressions for
� j /�sph �Eqs. �6a�–�6d��, where � j is the parallel, normal and
rotational friction coefficient of a rigid cylinder �for j
= p ,n ,r, respectively�, and �sph is the friction coefficient of a
sphere.

�p =
8��L

ln�L

d
+ �p	 , �6a�

�n =
4��L

ln�L

d
+ �n	 , �6b�

�r =
��L3

3 ln�L

d
+ �r	 , �6c�

and �sph = 6��a , �6d�

where K, T, and � are the Boltzmann constant, temperature
and solvent viscosity, respectively. �p, �n, and �r are correc-
tion terms added to the frictional coefficient equations to
include the effects of the cylinder ends on the cylinder dif-
fusion. The correction terms are equal to −0.114, 0.886, and
−0.447, respectively �19,20�. It is interesting to note that the
implicit technique intrinsically accounts for these end correc-
tions.

5. Generalized equations for implicit hydrodynamics

In Sec. II A 2 we described the implicit method for two
beads moving parallel and perpendicular to their center line.
The equations in Sec. II A 2 can be easily extended to cap-
ture the hydrodynamic influence between beads moving at
arbitrary velocities and directions. We demonstrate for the
case of two beads which are parts of two different rods sepa-
rated by an arbitrary angle and distance �Fig. 7�.

Let beads I and II be part of two separate rods. Let
V1

p ,V2
p and V1

n ,V2
n be the parallel and normal translational

velocities of the rods, and let �1 ,�2 be their orientation
angles �Fig. 7�. Let v1

p ,v2
p and v1

n ,v2
n be the corresponding

parallel and normal velocities of the beads of interest, and let
�12 and r12 be the angle and distance between them �Fig. 7�.
The hydrodynamic influence of bead II on bead I can be
determined as

�v1
pH

v1
nH � = �V1

p

V1
n � − H12�v2

pH

v2
nH � , �7�

where

(a)

(b)

(c)

FIG. 6. Validation of the implicit hydrodynamic technique. �a�
The scaled frictional drag or hydrodynamic velocity profile along a
rigid rod of 101 beads in normal translation, compared against the
predictions of Gluckman et al. �14�. �b� The total frictional drag on
rigid rods of different lengths in normal and parallel motion, com-
pared against standardized equations. The vertical axis shows the
total frictional drag of the rod scaled by that of a single bead. The
horizontal axis shows the number of beads constituting the rod. In
the absence of hydrodynamic screening between the beads of the
rod, the translational frictional drag would fall along the dashed line
of slope 1. �c� The scaled frictional drag on rigid rods of different
lengths in rotational motion, compared against standardized
equations.
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H12 = �cos��12 − �1� − sin��12 − �1�
sin��12 − �1� cos��12 − �1�

�

��
3a

2�r12�
cos �12

3a

2�r12�
sin �12

−
3a

4�r12�
sin �12

3a

4�r12�
cos �12

� �8�

H12 is a matrix describing the hydrodynamic influence of
bead II on bead I. It has two component matrices �Eq. �8��.
The right-side matrix determines the radial and tangential
solvent field due to bead II at the location of bead I. Multi-
plication by the left-side matrix projects the radial and tan-
gential solvent velocities at bead I in the directions of its
parallel and normal velocities. Following trigonometric sim-
plification, H12 can be reduced to

H12 =
3

4

a

�r12�
� cos �1 sin �1

− sin �1 cos �1
�

�� 1 + cos2 �12 cos �12 sin �12

cos �12 sin �12 1 + sin2 �12
� . �9�

The right-side matrix gives the solvent velocity that is in-
duced by bead II at bead I, projected along the x and y
directions. The left-side matrix projects that solvent velocity
into directions parallel and normal to bead I.

Figure 8 illustrates the use of Eqs. �7� and �9� to deter-
mine the change in the hydrodynamic velocity profile of a
rigid rod in normal translation �rod I�, from the presence of
neighboring rigid rod which is stationary �rod II�. The plots
are determined for three different angles and distances be-
tween the rods �Fig. 8�d��. The normal translation of rod I is
opposed by the presence of the stationary rod II, and corre-
spondingly the normal hydrodynamic velocities �and there-
fore drag� increases in regions close to rod II �Fig.
8�a�–8�c��. For instance, the bead hydrodynamic velocities of
rod I increase in the region away from its center, due to a
parallel neighboring rod located there; and the increase is
greater toward the rod end �Fig. 8�a�, and case �a� in Fig.
8�d��. When the neighboring rod is located perpendicular to-
ward the center of rod I, the normal hydrodynamic velocities

increase locally there �Fig. 8�b�, and Fig. 8�d� case �b��. As
expected, the hydrodynamic velocity profile due to a neigh-
boring rod that is positioned at an angle, appears to be some
combination of the profiles due to a parallel and perpendicu-
lar neighbor �Fig. 8�c�, and Fig. 8�d� case �c��. It is interest-
ing that the increase in hydrodynamic velocities occurs only
in regions adjacent to the neighbor, and the increase becomes
negligible by 50 bead diameters of separation �not shown�.

We also compared the sedimentation velocity of a tet-
ramer �4 beads at the corner of a square, and touching each
other� that is predicted by the implicit technique, against that
measured experimentally in Swanson et al. �21�. The implicit
hydrodynamics technique experimental method gave a sedi-
mentation velocity of 0.4447�0.0004 relative to that of a
free bead �21�.

B. Averaged implicit hydrodynamics

While the implicit method is relatively straightforward
and captures the end effects and hydrodynamic screening
that govern the diffusion of rigid rods, it is computationally
expensive. The technique introduces at least two new hydro-
dynamic variables per bead, and the computational cost of an
implicit matrix solution scales as N2, where N is the total
number of variables.

1. Averaged implicit hydrodynamics for a rigid rod

The normal and parallel hydrodynamic velocity profiles
along a rigid rod in pure translation or rotation �Figs. 5�a�

�12

r12

Bead I

Bead II

�1

�2
Rod II

Rod I

FIG. 7. Generalized hydrodynamic influence of bead II on bead
I.

100 bead diameters

(c)

(b)

(a)

Neighbor rods

50 bead
diameters Separation distance

Rod I

Rod II

(a) (b)

(c) (d)

FIG. 8. The change in the normal hydrodynamic velocity profile
of a rigid rod in normal translation from presence of a neighboring
stationary rod. Panels �a�, �b�, and �c� show the change in the nor-
mal hydrodynamic velocities of rod I, for three angles of the sta-
tionary neighboring rod II: 0°, 45°, and 90°, respectively. Panel �d�
shows the relative positions of the two rods for the three cases. Rod
I is shown as a black filled rod, and rod II is shown as a gray,
unfilled rods. The distances of separation between the rods are 5,
10, 20 and infinite bead diameters.
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and 5�b�� suggests that sections of the interior beads can be
approximated by a single normal, parallel and rotational hy-
drodynamic velocity. That is, the normal and parallel hydro-
dynamic velocity profile over a section of the interior beads
can be approximated from the normal, parallel and rota-
tional hydrodynamic velocity of the central bead, c, in the
section. For the ith bead in a section, the approximated nor-
mal and parallel hydrodynamic velocities are

vi
nH = vc

nH + wc
Hric, �10a�

vi
pH = vc

pH. �10b�

We refer to the central bead in a section as the representative
bead of that section. The parallel hydrodynamic velocity pro-
file of the interior beads fluctuate over a small length scale
with no definite trend �Fig. 5�c� and 5�d��. Therefore no use-
ful information is lost when fluctuating velocities are re-
placed by a constant value. In all, by assuming each section
of interior beads to have constant hydrodynamic velocities,
the implicit hydrodynamic equations need to be written and
solved for only one representative bead per section, and for
each end bead. This considerably reduces the cost of the
implicit solution. Also, by not considering the end beads as
part of a section, the large localized drag on them is still
captured, and the hydrodynamic profile over the rod is more
effectively approximated.

The angular hydrodynamic velocity of a representative
bead cannot be solved in a form similar to the normal hydro-
dynamic equation. It will result in a trivially zero equation if
a representative bead were located in the center of the rod
�rcc=0�. Instead, we determine the hydrodynamic angular
velocity about the representative bead as the differential of its
normal hydrodynamic velocity profile there. That is, we de-
termine it as the change in normal hydrodynamic velocity
experienced by the bead, if it translated an infinitesimal dis-
tance along the rod. If c be the representative central bead of
a section,

wc
H =

1

2a

d

di
�vi

nH��c. �11�

For simplicity, we first demonstrate the averaging technique
by grouping the interior beads of a rigid rod into a single

section. The hydrodynamic equation for the normal, parallel
and rotational hydrodynamic velocities about bead c can be
written using Eqs. �5� and �11�, and grouping beads with the
same hydrodynamic velocities,

�vc
pH

vc
nH

wc
H � · �

1 + �
j=2,j�c

M−1
3a

2�rcj�

1 + �
j=2,j�c

M−1
3a

4�rcj�

1 + �
j=2,j�c

M−1 � 3a

4�rcj�
� �

Hydrodynamic influence of section
on its representative bead

= �Vp

Vn

W
� − �

j=1,M �
3a

2�rcj�
0 0

0
3a

4�rcj�
0

0
3a

4�rcj�2
0
�

Hydrodynamic influence of end bead
on representative bead of section

· �v j
pH

v j
nH

0
�

�12�

The summation in the left hand side of Eq. �12� is over all
interior beads comprising the section. The summation in the
right hand side of the equation �Eq. �12�� is over the end
beads, j=1,M. The first matrix gives the hydrodynamic in-
fluence on bead c from within its section, and the second
matrix gives the hydrodynamic influence on bead c from the
end beads. We use the symbols HS and HSE to refer to the
two matrices, respectively.

Similarly the hydrodynamic equations for each end bead
can be written in the single-section averaging scheme. Note
that the angular hydrodynamic velocity equation is not re-
quired for the end beads. Writing Eq. �5� for i=1,M and
grouping the interior beads with the same hydrodynamic
velocities,

�vi
pH

vi
nH � = � Vp

Vn + Wric
� −��

j=2

M−1
3a

2�rij�
0 0

0 �
j=2,

M−1
3a

4�rij�
�
j=2

M−1

rjc
3a

4�rij�
�

Hydrodynamic influence of section on end bead �HES�

�vc
pH

vc
nH

wc
H � −

��vk
pH

vk
nH �k=1,M

k�i
�

3a

2�rik�
0

0
3a

4�rik�
�

Hydrodynamic influence of end
bead on end bead �HEE� �13�
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The summation in the first matrix is over all interior beads
comprising the section of beads. The first matrix gives the
hydrodynamic influence of the section on the end bead
�HES�, and the second matrix gives the hydrodynamic influ-
ence of one end bead on another �HEE�.

To summarize, the averaging procedure therefore consists
of two ideas. The first idea is that the normal and parallel
hydrodynamic velocity profiles over sections of interior
beads can be approximated by the normal, parallel and rota-
tional hydrodynamic velocity of the central bead in that sec-
tion. The second is that the angular hydrodynamic velocity
about the representative bead can be determined by the dif-
ferential of the normal hydrodynamic velocity profile there.
It is important to note that in this averaging technique, the
hydrodynamic equation written for a bead still includes the
hydrodynamic influences of all its neighboring beads. How-
ever, the number of beads for which the hydrodynamic equa-
tions need to be solved is reduced, thereby decreasing the
computational cost.

In Figs. 9�a�–9�d� we show the single-section averaging
of the hydrodynamic velocity profiles of Figs. 5�a�–5�d�. The
interior beads have uniform normal, rotational and parallel
hydrodynamic velocities for the respective cases of a rod in
pure normal, rotational, and parallel motion; and the end
beads show much higher hydrodynamic velocities. The total
drag calculated by summing the averaged profile matches
that predicted by standard equations and by the implicit
string-of-beads method �see Figs. 6�b� and 6�c��.

2. Averaged implicit hydrodynamics for multiple sections
and rigid rods

The above averaging technique can be extended to the
interaction between multiple sections within a rod, to the

interaction between multiple rods. The hydrodynamic equa-
tions now require generalized expressions for the hydrody-
namic influence of one end bead or section of beads on the
representative bead of a section or on an end bead. The hy-
drodynamic influence of an end bead on another end bead or
representative bead can be determined using Eq. �9� of Sec.
II A 4. The equation describes the hydrodynamic influence of
one arbitrarily placed bead on another. Here we describe the
calculation of the hydrodynamic influence of one section of
beads on the representative bead of another section. The hy-
drodynamic influence of a section on an end bead is similarly
calculated, except that the self interaction matrix HS is unity
for an end bead �the summation terms in HS of Eq. �12� do
not exist for an end bead�.

Consider two sections, S1 and S2, which are parts of two
separate rigid rods �Fig. 10�. Let V1

p ,V2
p and V1

n ,V2
n be the

parallel and normal translational velocities of the sections; �1

and �2 be their orientation angles; and c1 and c2 be their
representative central beads. Let �c1j and rc1j be the angle
and distance between c1 and the jth bead of section S2 �Fig.
10�. Let sections S1 and S2 be composed of M interior
beads. Using the previously described notation for the hydro-
dynamic velocities, the equation for the hydrodynamic

(a) (b)

(c) (d)

FIG. 9. Approximation of the bead hydrodynamic velocity pro-
file of Fig. 5 by assuming all interior beads to have uniform normal,
parallel, and rotational hydrodynamic velocities �that of the repre-
sentative beads�. The bead hydrodynamic velocity profiles are
shown in gray and their approximations are shown in black.

(b)

c1

S2

S1

c2 Bead j

(a)

c2

�1

�2

S1

c1

S2
Bead j

FIG. 10. Capturing the hydrodynamic influence of the beads of
section S2 on the representative bead of section S1. �a� The distance
rjc1

and the angle � jc1
between c1 and bead j of section S2, vary for

each bead when integrating through the beads of S2. �b� A simple
rotation of frame so that section S2 lies along the horizontal axis,
makes rjc1

and � jc1
a function of only one variable xjc1

.
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influence of sections S1 and S2 on the representative bead of
section S1 is given as


vc1

pH

vc1

nH

wc1

H � • HS1
= 
V1

p

V1
n

W1
� − HS1S2
vc2

pH

vc2

nH

wc2

H � , �14�

where

HS1
=

3

4
a�

1 + 

j=1,j�c

M
3a

2�rc1j�

1 + 

j=1,j�c

M
3a

4�rc1j�

1 + 

j=1,j�c

M
3a

4�rc1j�

�
j�S1

, �15�

HS1S2
= � cos �1 sin �1 sin �1

− sin �1 cos �1 cos �1

− sin �1 cos �1 cos �1
�

��
− �

j=1

M �1 + cos2 �c1j

rc1j
�dj − �

j=1

M � sin �c1j cos �c1j

rc1j
�dj − �

j=1

M

rc2j� sin �c1j cos �c1j

r1j
�dj

− �
j=1

M � sin �c1j cos �c1j

rc1j
�dj − �

j=1

M �1 + sin2 �c1j

rc1j
�dj − �

j=1

M

rc2j�1 + sin2 �c1j

rc1j
�dj

d

ds
�

j=1

M � sin �c1j cos �c1j

rc1j
�dj

d

ds
�

j=1

M �1 + sin2 �c1j

rc1j
�dj

d

ds
�

j=1

M

rc2j�1 + sin2 �c1j

rc1j
�dj
�

j�S2

, �16�

where
d

ds
=

1

2a
� d

di
�

c
. �17�

HS1 is the matrix showing the hydrodynamic influence of S1
on its central representative bead c1, and is similar to HS in
Eq. �12�. HS1S2 is the matrix showing the hydrodynamic in-
fluence of the beads of S2 on the representative bead c1. It is
derived from the matrix describing the generalized hydrody-
namic influence of one bead on another �Eq. �9��, but is
integrated over all beads of section S2 to capture the hydro-
dynamic influence of section S2 on c1. Also, HS1S2 includes
the hydrodynamic influence of section S2 on the averaged
angular hydrodynamic velocity of S1—obtained as the dif-
ferential change in the normal hydrodynamic velocity profile
along S1 at c1, induced by the presence of section S2.

The integrals in HS1S2 are difficult to evaluate as both rc1j
and �c1j vary from bead to bead along section S2. Instead, we
evaluate them by rotating the frame so that S2 now lies along
the horizontal axis �Fig. 9�b��. This makes rc1j, sin �c1j and
cos �c1j within the integral a function of only one variable,
xc2j and the constants 	X12 and 	Y12,

rc1j
2 = �	X12 − xj�2 + 	Y12

2 , �18a�

cos �c1j =
�	X12 − xj�

rc1j
, �18b�

sin �c1j =
	Y12

rc1j
, �18c�

where xc2j is the distance between the jth bead of section S2
and its central bead c2. 	X12 and 	Y12 are the horizontal and
vertical distance between the central beads in the new refer-
ence frame. It is noted that the subscript j indicates a bead
belonging to section S2 in the above three equations.

Fig. 11 shows the averaged hydrodynamic profile of the
100 bead rod in Fig. 8 for the case of a 10 bead separation
from its neighbor. The rods were averaged using 10 and 20
sections per rod. As shown in Fig. 11, the averaging tech-
nique reproduced the profile of the bead hydrodynamic ve-
locities to a good degree, with the fit improving with increas-
ing sections per rod.

C. Incorporating implicit hydrodynamics in Brownian
dynamics of semiflexible filaments

We now demonstrate how the implicit bead hydrodynam-
ics can be incorporated into a string-of-beads idealization of
a semiflexible filament, and then show how the averaged im-
plicit hydrodynamics can be included in a string-of-rods ide-
alization of a semiflexible filament that was earlier devel-
oped by the authors �6�.
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1. String-of-beads idealization of semiflexible filament

In a string-of-beads representation, the Brownian dynam-
ics of a semiflexible filament is usually determined by solv-
ing the particle form of the Langevin dynamics equation over
each bead. The Langevin dynamics equations govern the bal-
ance between its frictional drag force, conservative force
�FP�, and random Brownian forces �FB�. At each bead i,

�vi�t� = Fi
P�t� − Fi

B�t� , �19�

where � is the frictional coefficient of a bead, and v is the
bead velocity. Typical conservative forces �FP� are bending
and stretching forces which depend on the relative positions
of the beads. The Brownian force �FB� at each bead is ob-
tained from a Gaussian distribution whose variance is given
by the fluctuation dissipation theorem as

�FB�t�FB�t��� = 4KT�
�t − t�� . �20�

In this Langevin dynamics setting, we incorporate hydrody-
namic interaction by having the frictional drag on a bead be
determined by its hydrodynamic or true relative velocity �vH�
rather than its observed velocity v.

�vi
H�t� = Fi

P�t� − Fi
B�t� . �21�

Solving Eqs. �21� and �7� �equation for the bead hydrody-
namic velocity� for all beads simultaneously, the Brownian
dynamics of the semiflexible filament can be determined
with the hydrodynamics included.

2. String-of-rods idealization of semiflexible filament

As discussed previously, solving for the hydrodynamics
implicitly in a string-of-beads idealization introduces at least
two new variables per bead, increasing the size of the com-
putational problem. Instead, we can use the idea of grouping
interior beads in sections and solving for the hydrodynamic
velocities of the representative bead alone �see Sec. II B 2� in
a string-of-rods idealization of a semiflexible filament �6�
�Fig. 1�d��. We briefly describe the string-of-rods idealization
below, and then show how the averaged implicit hydrody-
namics can be easily included in it.

In a string-of-rods idealization, a semiflexible filament is
treated like a string of contiguously bending rods or seg-
ments �Fig. 12�a��, and the Brownian dynamics determined
by solving equations at the segment intersections. The main
ideas of the formulation are �6�:

�i� The semiflexible filament is divided into segments
�Fig. 12�a��. At each segment intersection or node the follow-
ing six variables are solved for: the x and y displacements of
the intersection, the filament angle � and the curvature d� /ds
at the intersection, and the x and y forces arising at the cut
face of the intersection. From the x and y forces, the differ-
ential of the filament curvature, d2� /ds2, at the intersection
can be determined.

�ii� The dynamics of a segment is determined by the bal-
ance of three forces acting on it: the Brownian and drag
forces acting along its length, and the forces arising at the cut
face of its ends �6�.

�iii� The Brownian forces distributed along the curved
segment are resolved in the following way: the normal/

parallel Brownian forces along the segment can be projected
in two mutually perpendicular directions �u1- and u2-�, and
the projections can then be resolved into normal/parallel re-
sultant forces and couples acting at the center of each pro-
jection �Fig. 12�b��. The variance of the resultant forces and
couples can be shown determined by the friction coefficients
of rigid cylindrical rods �Eqs. �6��.

�iv� The drag forces distributed along the segment length
are similarly resolved. The normal/parallel drag forces along
a curved segment is projected in two mutually perpendicular
directions �u1- and u2-�, and the projections can then be re-

(a) (b)

(c)

FIG. 11. Averaged hydrodynamic profile of the 100-bead rod in
Figs. 8�a�–8�c� shown only for the case of a 10 bead separation
from its neighbor. The rods were averaged using 10 and 20 sections.

u1
u2

(a)

(b)

FIG. 12. Rods-on-string idealization of semiflexible filaments.
�a� The rods-on-string idealization treats a semiflexible filament as a
string of continuously bending rods or segments. The filament vari-
ables at the rod intersections or nodes are solved for. �b� The forces
on a curved segment are resolved into their projections in two mu-
tually perpendicular directions. The mutually perpendicular direc-
tions are taken to be along the line joining the segment ends �u1�,
and along the line perpendicular to it �u2�. The projected forces in
each direction are further resolved into a resultant force and couple
in that direction. Solving for the force and moment balance equa-
tions over an instantaneously rigid rod requires only knowing the
resultant forces and couples. In panel �b� only the distributed forces
normal to the curved segment are considered.
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solved into a normal/parallel resultant forces and couples
acting at the center of each projection. The normal/parallel
drag forces along the segment are calculated from the dis-
placements along the segment, normal and parallel to it.

�v� For such a force resolution, the force and moment
balance equations in the large-strain Euler bending theory
can be used to solve for the filament curvature, d� /ds, and
the x and y forces at the segment intersections. Also, the
integral of the Euler moment-balance equation can be used to
solve for the filament angle, �, at the segment intersections.

�vi� For each segment, �, d� /ds, and d2� /ds2 at its two
ends are known. Therefore, using a fifth-order polynomial
interpolation, ��s� can be determined as a function the seg-
ment’s contour, s. Then by integrating the sine and cosine
projections of ��s�, the x- and y-length projections of the
segment can be determined. From the change in the x- and
y-length projections at each time-step, the x and y displace-
ments of the segment intersections are solved for.

�vii� At each time-step, the six equations are assembled
for each segment and the entire equation set for the filament
is solved simultaneously.

�viii� The time evolution of the semiflexible filament dy-
namics is solved by backward Euler time stepping. This also
means that the segment configuration at the beginning of the
time-step determines the resultant Brownian forces and
couples for that time step, and it also determines the direc-
tions considered normal and parallel to the segment.

The computational advantage of the above formulation is
that many beads are replaced by a single rod as the unit of
coarse graining. This reduces the overall size of the equation
set and therefore the cost of computing. The formulation also
captures the physics of the Brownian bending better: the Eu-
ler beam equations are solved without discretizing, the con-
tinuous curvature of the filament is reproduced, and filament
inextensibility is intrinsically preserved since the � profile is
determined as a function of the segment contour s.

Within the setting of the string-of-rods formulation, the
averaged implicit hydrodynamics are incorporated in the fol-
lowing way. First, in the string-of-rods idealization the drag
forces along a segment need to be calculated as resultant
forces and couple in two mutually perpendicular directions
�Fig. 12�b��. Usually, one of these directions is taken to be
along the straight line joining the two segment ends �u1-�,
and the other direction is taken along the line perpendicular
to it �u2-� �Fig. 12�b��. Since our averaged implicit hydrody-
namic model is currently only applicable for straight sections
of a filament, we use it to determine the resultant drag force
and couple over the segment projection u1-only �Fig. 13�.
Therefore, the u1-projection of a curved segment is equiva-
lent to a “section” in the averaged implicit hydrodynamics
method. We retain the previously described method �6� to
determine the resultant drag force and couple in the
u2-projection. The u2-segment projections are typically much
smaller that the u1-segment projections �much less than 5%
for the segment resolutions in the simulations in this paper�.
Hence, we do not expect the u2-drag to have a significant
effect on the overall segment hydrodynamics. Secondly, the
hydrodynamic velocities of the filament ends are also solved
for separately. That is, the filament ends are treated like the
end beads of the averaged implicit hydrodynamics method

�Fig. 13�. The hydrodynamic drag forces arising at the fila-
ment ends are treated in the string-of-rods idealization as end
forces �6�.

The resultant drag force and couple on the u1-segment
projection due to the hydrodynamic velocities of its repre-
sentative bead are

Fi
kH = �sphvi

kHLi
u1

2r
k = n,p , �22�

Fi
wH = �sphwi

HLi
u1

2r
, �23�

Fi
kH and Fi

wH are the resultant drag force and couple on the
u1-projection of segment i. The superscripts n , p indicate the
directions normal and parallel to the u1-segment projection.
vi

nH, vi
pH and wi

H are the normal, parallel and angular hydro-
dynamic velocities of the representative bead of the
u1-projection of segment i, and Li

u1 is the projection of the
contour length of segment i in the u1-direction.

The end force due to the hydrodynamic velocities of the
filament ends appear as

Fb
kH = �sphvb

kH k = n,p , �24�

where Fb
kH is the drag force due to the filament end bead b,

and vb
nH and vb

pH are the normal and parallel hydrodynamic
velocities of the filament end.

At each time step of the semiflexible filament simulation,
the hydrodynamic equations for the representative and end
beads are solved simultaneously with the equations for the
node degrees of freedom. In keeping with the backward Eu-
ler time-stepping solution, all the hydrodynamic interaction
terms are calculated based on the filament geometry at the
beginning of the time step.

FIG. 13. Incorporating averaged implicit hydrodynamics in the
string-of-rods idealization of semiflexible filaments. The string-of-
rods idealization considers a semiflexible filament �shown in gray�
as a continuously curved string of rods or “segments.” The average
implicit hydrodynamics is used to solve the hydrodynamic veloci-
ties of the end beads �circles with solid outlines�, and that of the
central representative beads �circles with broken outlines� of the
u1-projections of the segments. The u1-projection of each segment
is shown in thin black lines and is along the direction joining the
two ends of the segment. Therefore the u1-projection of each seg-
ment constitutes a section in the implicit hydrodynamics technique.
The hydrodynamic drag force due to the hydrodynamic velocities of
an end bead enters the string-of-rods formulation as an end force on
that segment. The hydrodynamic drag due to the hydrodynamic
velocity of a representative bead enters the string-of-rods formula-
tion as the resultant drag force/couple on the u1-projection of that
segment.
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III. RESULTS AND SIMULATIONS

A. Brownian fluctuations of a semiflexible filament.

We simulated the Brownian fluctuation of a 12 �m
phalloidin-stained actin filament with bending stiffness EI
=7.3e−26 N m2, in water at 25 °C �5�. The filament was
modeled as a string of 15 segments of length 0.8 �m each,
for 25 s in time steps of 0.0025 s. The results of these simu-
lations are shown in Fig. 14. For each time step, the filament
contour was decomposed into Fourier sine series and the
amplitudes of the first nine Fourier bending modes are cal-
culated �5�. The variance of these bending amplitudes is plot-
ted in Fig. 14�a�. The variances compare well against theo-
retical predictions obtained by equating the bending energy

of each mode to KT /2 �Equipartition theorem� �5,22�, vali-
dating the Brownian model. We also compare the time evo-
lution of the bending amplitudes of the first four bending
modes against that predicted for a semiflexible filament un-
der small bending strains and having a uniform friction co-
efficient along its length �23�. The plot �Fig. 14�b�� indicates
the time evolution behavior to be in the proximity of the
theoretical approximation. It also shows that the simulation
reaches equilibrium for all the bending modes.

Experimental validation of fluctuation dynamics.
Bernheim-Groswasser et al. �24� used fluorescence correla-
tion spectroscopy to measure the time evolution of the mean-
squared-displacement �MSD� of fluorescent-labels on actin
filaments in Brownian fluctuation, for over five decades in
time �20 �s–2 s�. They found that only filament fluctuation
theories which included hydrodynamic interaction could pre-
dict the experimental observations. However beyond 10 ms
time intervals, the predictions degraded for the hydrody-
namic theories without fitting parameters. We simulated the
experiment using actin filament dimensions and experimen-
tal conditions reported in the paper �24� �6 �m filament,
17 �m persistence length, 7 nm diameter, and 1 mPa solvent
viscosity�. We performed the simulation for 10 s at 0.0005 s
time intervals. Figure 15 shows the time evolution of the
MSD of the filament nodes during the simulation. The simu-
lation data are plotted against the experimental determina-
tions of the MSD of homogenously and nonhomogenously
labeled actin filaments. The simulation results compare well
against the experimental result, even in time intervals above
10 ms. Note that we did not simulate MSD evolution at time
intervals below 0.0005 s.

B. Hydrodynamic screening and Brownian fluctuations of a
semiflexible filament

For a preliminary understanding of how hydrodynamic
screening and nonuniform friction coefficient affected the
Brownian fluctuations of a semiflexible filament, we exam-

(a)

(b)
t (sec)

FIG. 14. Validation of the rods-on-string idealization of semi-
flexible filaments with averaged implicit hydrodynamics. The simu-
lation results for the Brownian fluctuations of a phalloidin-stained
actin filament are shown �12 �m length, 7.3e−26 N m2 persis-
tence length, 0.0025 s simulation time interval�. �a� The variances
of the amplitude �an� of the first nine bending modes �n� are shown.
The amplitudes of the bending modes are calculated from the simu-
lation results by decomposing the filament conformation at each
time step into Fourier series. Theoretical estimates of the amplitude
variances can be made by assuming each bending mode to have
KT /2 energy �equipartition theorem�. The variances determined
from the simulation closely match the theoretical estimates. �b� The
time evolution of the variance of the bending amplitude for the first
four modes is shown in black. Shown in gray are the theoretical
estimates of the time evolution obtained by assuming small bending
fluctuations and a constant hydrodynamic friction. The simulation
results lie in the vicinity of the theoretical estimates.
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FIG. 15. Experimental validation of model dynamics. The time
evolution of the mean-squared displacement of an actin filament is
plotted as a function of time interval, 	t. The MSD was determined
as �r2�t-	t��. The simulation result for a 6 �m actin filament is
shown with gray diamonds. The experimental observation for ho-
mogenously and nonhomogenously labeled actin filaments is shown
with unfilled and filled black diamonds, respectively. The experi-
mental data were obtained from Bernheim-Groswasser et al. �24�.
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ined the contribution of solvent velocity �induced by the
bending fluctuations� to the observed velocity along the fila-
ment �see Eq. �1��. Only velocities normal to a segment were
considered, although the discussion is applicable to the par-
allel and rotational velocities as well. We simulate the
Brownian fluctuations of the actin filaments at 0.01 sec time
steps, and with all other simulation parameters the same as
Sec. III A. Shown in Fig. 16�a� are the x /y positions of the
filament nodes at the first four simulation times �0, 0.01,
0.02, 0.03 s�. The initial conformation of the filament at 0sec
is that of a straight rod. We examined the observed and hy-
drodynamic velocity along the filament at each representa-
tive bead and at the end beads for each simulation time in-
terval �Figs. 16�b�–16�d��. The difference between the
observed and hydrodynamic velocities would be the velocity
contribution from the induced solvent flow �see Eq. �1��.

In the three time intervals shown, the hydrodynamic ve-
locities are much lower than the observed velocities, except
at the filament ends �Figs. 16�b�–16�d��. Conversely, the sol-
vent velocity profile appears to closely match the observed
velocity profile, except at the filament ends. Therefore, the
following inductions can be made by comparing the plots in
Figs. 16�b�–16�d�. The larger hydrodynamic velocities or
drag occur at the filament ends. The solvent flow or hydro-
dynamic screening contributes to a large part of the observed
velocity in the interior of the filaments. In fact, the solvent
flow contributes to most of the observed velocity at the sides
of the convexities in the normal velocity profile �black dia-
monds in Figs. 16�b�–16�d��, and at points where the hydro-
dynamic or relative velocity is zero �gray circles in Figs.
16�b�–16�d��. To the most part, the solvent contribution ap-
pears to magnify convexities in the hydrodynamic velocity
profiles. These observations suggest that the solvent flow in-
duced by hydrodynamic interactions may have a systematic
influence in the Brownian conformations assumed by a semi-
flexible filament.

C. Confined fluctuations of a semiflexible filament between
two stationary filaments

We show that our model captures the lateral hydrody-
namic confinement of a fluctuating semiflexible filament be-
tween two stationary filaments. We repeat our previous actin
filament simulations, but with two stationary actin filaments
placed alongside at three confinement widths of 3, 1.5, and
1 �m �Fig. 17�. Also, to better capture the confinement we
use the central difference instead of the backward time step-
ping to calculate the hydrodynamic velocities. Calculation of
the hydrodynamic velocities requires knowing the relative
positions of the filaments. In the backward Euler stepping
scheme, the relative positions at the beginning of the time
step is used. Using the filament positions at the beginning of
the time step may overestimate or underestimate the friction
drag experienced by a fluctuating filament, especially if con-
fined. For instance, it would underestimate the drag on a
filament approaching a neighbor, leading to crossover. It will
also overestimate the drag on a filament moving away from a
neighbor, leading to the filament being stuck in the vicinity
of the neighbor. Decreasing the simulation time interval
would alleviate these issues, but we chose to use the central-
difference time stepping instead.

Figure 17 shows the Brownian fluctuations of the 12 �m
actin filament between two other stationary actin filaments
separated by 3, 1.5, and 1 �m. The filaments undergo fluc-
tuations of decreasing amplitude with increasing confine-
ment. At 1.2 s, the unconfined filament shows a larger trans-
lational and rotational diffusion than the confined filaments.
These simulation results show that our model is able to cap-
ture the two-dimensional confinement of the fluctuating fila-
ment that occurs due to hydrodynamic interaction. Moreover,
we calculated the variances of the bending amplitude for the
different bending modes, for each case of confinement. Fig-
ure 18�a� suggests that confinement occurs as a decrease in
the amplitude of the bending modes. Figure 18�b� shows the
correlation of the contour angles as function of filament
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FIG. 16. Hydrodynamic contribution to the Brownian fluctua-
tions of a semiflexible filament. �a� The Brownian conformation of
a 12 �m actin filament at 0, 0.01, 0.02, and 0.03 s. The x and y
positions of the filament nodes are plotted. �b,c,d� The normal ve-
locities of the end and representative beads in the time intervals of
0–0.01 s �a�, 0.01–0.02 s �b�, and 0.02–0.03 s �c�, plotted against the
x positions of the representative/end beads at time t=0 s.
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length. The decay in correlation along the filament contour is
much slower with increasing confinement, and the overall
degree of correlation is higher with increasing confinement.
The angle correlation profiles suggest that the filament per-
sistence length increases with increasing confinement �Fig.
18�b��. A similar increase in persistence length was observed
by Koster et al. �25� for actin filaments fluctuating in confin-
ing microchannels of decreasing width. Figures 18�c�–18�f�
show the time correlation profile of the first four bending
modes for the different degrees of confinement. While the
plots clearly show the equilibrium bending variance to de-
crease with increasing confinement, we do not have conclu-
sive data yet on how the time relaxation for bending changes
with confinement.

IV. SUMMARY AND DISCUSSION

Semiflexible filaments, constituting the chief structural in-
gredients of the cytoskeleton �26� while contributing to the
mechanical signaling pathways in the cell �27,28�, are gen-
erally subject to hydrodynamic forces due to solvent flows
induced by the bending and diffusive motions within the fila-
ments themselves and from their surrounds filaments. The
aim of this paper was to include the effect of hydrodynamic
interaction in a dynamic model of semiflexible filament. The
drag along a filament is altered by the solvent flow induced
by the bending and diffusive motions along the filament, and
along neighboring filaments. For example, the drag along a
rigid filament in uniform motion is not uniform due to the
hydrodynamic screening within the filament. The nonuni-
form drag would have caused a semiflexible filament to

0 sec

.1 sec

.2 sec

.3 sec

.4 sec

.5 sec

.6 sec

.7 sec

.8 sec

.9 sec

1 sec

1.1 sec

1.2 sec

Unconfined 3�m 1.5 �m 1 �m

FIG. 17. �Color online� The Brownian fluctuations of a 12 �m
actin filament in the unconfined and laterally confined state. The
filament properties are similar to that in previous simulations. The
simulations were performed in time intervals of 0.0025 s. The con-
fined filament fluctuates between two other stationary filaments
separated by 3, 1.5, and 1 �m �from the left to right in figure�.
From top to down, the fluctuations of the filament at every 0.1 s
intervals are shown. The filament conformation is obtained by fifth-
order interpolation between the filament nodes �shown as black
dots�. The filament contour length between two nodes �black dots�
is 0.8 �m.

(a) (b)

(c) (d)

(e) (f)t (sec) t (sec)t (sec)

t (sec) t (sec)

FIG. 18. Dynamics of laterally confined fluctuating actin fila-
ments. �a� Variance of the first four bending amplitudes for different
degrees of confinement. �b� Angle correlation along the filament
length for different degrees of confinement. �c� Time correlation of
the amplitude of the first bending mode �a1� for different degrees of
confinement. �d� Time correlation of the amplitude of the second
bending mode �a2� for different degrees of confinement. �e� Time
correlation of the amplitude of the third bending mode �a3� for
different degrees of confinement. �f� Time correlation of the ampli-
tude of the fourth bending mode �a4� for different degrees of
confinement.
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bend. Therefore, hydrodynamic interactions do not only af-
fect the bending fluctuations of a filament in nondilute sys-
tems, but also affect filaments in dilute systems due to the
altered drag from hydrodynamic screening effects. It is there-
fore important for realistic models of semiflexible filaments
dynamics to include hydrodynamic interaction.

Due to the induced solvent flow, the true relative velocity
along the filament is different from the observed velocity. We
refer to the true relative velocity along the filament as the
hydrodynamic velocity. The common way to capture the
relative velocities along the filament is to idealize it as a
string-of-beads, and use the linearity of Stokes flow to deter-
mine the induced solvent field by superposing the separate
solvent fields due to each bead. However, the first-order
Stokes superposition neglects the back reflection of solvent
flow. We corrected for this by casting the true relative veloc-
ity of the bead as a new variable and solving for it implicitly.
We call the true relative velocity of the bead as its hydrody-
namic velocity. The one-step implicit solving of hydrody-
namic variables is equivalent to infinite superpositions of the
bead solvent fields or infinite reflections in the Method of
Reflections because �1� each superposition serving to enforce
the no-slip boundary condition at a bead can be mathemati-
cally interpreted as requiring that solvent flow be induced by
the hydrodynamic velocity of a particle alone, �2� infinite
orders of explicit iteration are equivalent to one implicit so-
lution. The predictions of the implicit technique deteriorate
at very small distances between beads. This is not because of
the Stokesian superpositions, but because the presence of a
bead in the solvent is represented by a point perturbation in
the velocity field. In other words, the equations for the sol-
vent flow around a bead �Fig. 2� do not respect the impen-
etrability of the bead. However, in spite of this limitation, the
predictions of an implicit or infinite-order superposition is
vastly superior to that of a first-order superposition, espe-
cially in that it captures the hydrodynamic influence of sta-
tionary particles while being relatively easy to implement.

A string-of-beads approach is traditionally limited by the
computational size of even modeling a single filament. The
proposed method addresses this limitation by assuming sec-
tions of beads, excepting the beads at the ends of filaments,
to have the same average hydrodynamic velocities. We do
not include the end beads in the averaging because the larger
hydrodynamic drags are typically concentrated at the fila-
ment ends. By solving for their relative velocities separately,
we are able to better resolve the hydrodynamic profile along
the filament. The averaging is performed by approximating
the normal and parallel hydrodynamic velocities of the beads
in a section by the normal, parallel, and angular hydrody-
namic velocity of the central representative bead in the sec-
tion. This is equivalent to approximating the hydrodynamic
profile in the section by a linear normal hydrodynamic pro-
file and a constant parallel hydrodynamic profile. As a result
of such averaging, the hydrodynamic equations need to be
only solved for the representative equations, but the hydro-
dynamic influence from all beads is included. We do not
write the equations for the angular hydrodynamic velocity of
the representative bead in a form similar to its normal hydro-
dynamic velocity. Doing so would result in the equations
being trivially zero. Instead we write the angular hydrody-

namic equation as a differential of the representative bead’s
normal hydrodynamic velocity equation. In other words, we
solve for the angular hydrodynamic velocity by differentiat-
ing normal hydrodynamic velocity profile of the section, at
the representative bead.

We incorporated the averaged implicit hydrodynamics
into an earlier proposed string-of-rods idealization of a semi-
flexible filament �6�. In that formulation, the semiflexible
filament is divided into continuously curved segments. The
drag force distributed along on a curved segment is resolved
into resultant forces and couples acting on two mutually per-
pendicular projections of the segment. One projection �u1-�
is taken to be the line joining the segment ends. We treat this
projection as equivalent to a “section” in the averaged im-
plicit technique. The hydrodynamic velocity of the central
representative bead of the projection is used to determine the
resultant drag forces and couple on it. The hydrodynamic
equations of the filament end beads and the hydrodynamic
equations of the representative beads of the u1-projections
are solved simultaneously with the equations of the string-
of-rods idealization. We found that the time evolution of the
bending amplitudes lies in the vicinity of the theoretical ap-
proximation. The theoretical approximation assumes that the
filament bending is small and that the friction coefficient
along the filament is uniform, i.e., it neglects hydrodynamic
interaction. We also simulated experimental data on the time
evolution of the mean-squared displacement �MSD� of fluc-
tuating actin filaments. A good prediction was observed even
for time intervals above 10 ms, where models of transverse
filament fluctuation, hydrodynamic interaction included,
fared less well �24�. The time evolution of the filament MSD,
observed in the experiment and in our simulation, was much
larger than the predictions of filament models with no hydro-
dynamic interaction. This suggests that hydrodynamic inter-
action could possibly decrease the time-relaxation constants
for the bending of semiflexible filaments.

Examination of the contribution of hydrodynamic forces
to the bending fluctuations of a semiflexible filament showed
that at point along the filament, the difference between the
observed and hydrodynamic velocity gives the part of the
point’s motion that occurs from drifting in the solvent flow
induced by its neighbors. We found that a large part of the
observed velocities along a filament can be attributed to
drifting in induced solvent flow. And as expected, the ob-
served velocities at the filament ends received much less
contribution from the induced solvent flow. Thus the hydro-
dynamic drag profiles along the fluctuating semiflexible fila-
ment are reminiscent of those observed along rigid filaments
�see Fig. 5�a� and Ref. �7��, except that the nonuniformities
are less pronounced. This is because a semiflexible filament
can bend to equalize the nonuniform drag forces along it.
More study is required to understand how hydrodynamic in-
teractions systematically affect the bending fluctuations of a
semiflexible filament.

We tested the ability of our model to show the confine-
ment of a fluctuating filament between neighboring filaments
due to hydrodynamic interaction. For ease of demonstration,
we chose the neighboring filaments to be stationary. We note
that a first-order superposition would miss the hydrodynamic
confinement from stationary filaments. In order to capture
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the fast-changing drag on a confined filament as it moves
toward and away from its neighbors, we chose to solve the
hydrodynamic equations alone by central-difference time
stepping instead of the backward time stepping used in the
rest of the model. A central time stepping takes the average
of the filament positions at the beginning and end of the time
step, and therefore gives a better estimate of the average drag
experienced by the filament during the simulation time inter-
val. The simulation results show the persistent length of the
filament increases with increasing confinement, suggesting
that the filament confinement occurs as change in persistence
length. We also show the time evolution of the bending am-
plitudes of the confined filaments that was observed in our
simulations. More rigorous studies are required, however, to
quantify the time-relaxation behavior. Finally we note that
the crossing over of filaments is not prevented in our simu-
lations. Since the hydrodynamic equations are only solved at
representative and end beads and since the hydrodynamic
forces only increase by r−1 as the r �distance of separation�
decreases, the filament is free to crossover each other. The
simulations only break down when the representative or end

beads intersect. Accounting for the van der Waals steric hin-
drance forces would alleviate this problem to a large extent.
However, we chose not to include the steric forces in our
two-dimensional model, because a two-dimensional �2D� ap-
proximation of a three-dimensional �3D� system by itself
tends to overestimate the confinement effect.

To conclude, we presented a model of semiflexible fila-
ments that accounts for the hydrodynamic effects originating
both within itself and from interaction with its neighbors.
The model offers great potential for understanding the rheol-
ogy of nondilute semiflexible filament systems, which in turn
is useful for understanding the mechanics of cell and tissue
matrices �26�.
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